人工智能的原理,简单的形容就是:
人工智能=数学计算。机器的智能程度,取决于“算法”。最初,人们发现用电路的开和关,可以表示1和0。那么很多个电路组织在一起,不同的排列变化,就可以表示很多的事情,比如颜色、形状、字母。再加上逻辑元件(三极管),就形成了“输入(按开关按钮)——计算(电流通过线路)——输出(灯亮了)”这种模式。想象家里的双控开关。为了实现更复杂的计算,最终变成了,“大规模集成电路”——芯片。电路逻辑层层嵌套,层层封装之后,我们改变电流状态的方法,就变成了“编写程序语言”。程序员就是干这个的。程序员让电脑怎么执行,它就怎么执行,整个流程都是被程序固定死的。要让电脑执行某项任务,程序员必须首先完全弄清楚任务的流程。就拿联控电梯举例:别小看这电梯,也挺“智能”呢。考虑一下它需要做哪些判断:上下方向、是否满员、高峰时段、停止时间是否足够、单双楼层等等,需要提前想好所有的可能性,否则就要出bug。
某种程度上说,是程序员控制了这个世界。可总是这样事必躬亲,程序员太累了,你看他们加班都熬红了眼睛。
于是就想:能不能让电脑自己学习,遇到问题自己解决呢?而我们只需要告诉它一套学习方法。
大家还记得1997年的时候,IBM用专门设计的计算机,下赢了国际象棋冠军。其实,它的办法很笨——暴力计算,术语叫“穷举”(为了节省算力,IBM人工替它修剪去了很多不必要的计算,比如那些明显的蠢棋,并针对卡斯帕罗夫的风格做了优化)。计算机把每一步棋的每一种下法全部算清楚,然后对比人类的比赛棋谱,找出最优解。一句话:大力出奇迹!但是到了围棋这里,没法再这样穷举了。力量再大,终有极限。围棋的可能性走法,远超宇宙中全部原子之和(已知),即使用目前最牛逼的超算,也要算几万年。在量子计算机成熟之前,电子计算机几无可能。程序员给阿尔法狗多加了一层算法:A、先计算:哪里需要计算,哪里需要忽略。B、有针对性地计算。——本质上,还是计算。哪有什么“感知”!在A步,它该如何判断“哪里需要计算”呢?这就是“人工智能”的核心问题了:“学习”的过程。仔细想一下,人类是怎样学习的?人类的所有认知,都来源于对观察到的现象进行并根据总结的规律,预测未来。当你见过一只四条腿、短毛、个子中等、嘴巴长、汪汪叫的动物,名之为狗,你就会把以后见到的所有类似物体,归为狗类。机器的学习方式,和人类有着质的不同:人通过观察少数特征,就能推及多数未知。举一隅而反三隅。机器必须观察好多好多条狗,才能知道跑来的这条,是不是狗。这么笨的机器,能指望它来统治人类吗。它就是仗着算力蛮干而已!力气活。具体来讲,它“学习”的算法,术语叫“神经网络”(比较唬人)。(特征提取器,总结对象的特征,然后把特征放进一个池子里整合,全连接神经网络输出最终结论)
它需要两个前提条件:1、吃进大量的数据来试错,逐渐调整自己的准确度;2、神经网络层数越多,计算越准确(有极限),需要的算力也越大。神经网络这种方法,虽然多年前就有了(那时还叫做“感知机”)。但是受限于数据量和计算力,没有发展起来。神经网络听起来比感知机不知道高端到哪里去了!这再次告诉我们起一个好听的名字对于研(zhuang)究(bi)有多重要!这两个条件都已具备——大数据和云计算。谁拥有数据,谁才有可能做AI。目前AI常见的应用领域:图像识别(安防识别、指纹、美颜、图片搜索、医疗图像诊断),用的是“卷积神经网络(CNN)”,主要提取空间维度的特征,来识别图像。自然语言处理(人机对话、翻译),用的是”循环神经网络(RNN)“,主要提取时间维度的特征。因为说话是有前后顺序的,单词出现的时间决定了语义。神经网络算法的设计水平,决定了它对现实的刻画能力。顶级大牛吴恩达就曾经设计过高达100多层的卷积层(层数过多容易出现过拟合问题)。当我们深入理解了计算的涵义:有明确的数学规律。这个世界是是有量子(随机)特征的,就决定了计算机的理论局限性。——计算机连真正的随机数都产生不了。——机器仍然是笨笨的。更多神佑深度的人工智能知识,想要了解,可以私信询问。
搭建AI人工智能客服主要分为以下几个步骤:
1. 数据收集和准备:首先需要收集和整理与客服相关的数据,包括常见问题和对应的答案、用户的历史问题与解决方案、以及一些其他相关数据。这些数据可以来自于公司内部的知识库、客户反馈、在线论坛等渠道。
2. 数据标注和训练:将收集到的数据进行标注,明确每个问题和对应的答案。然后使用机器学习算法,如自然语言处理(NLP)和深度学习模型,对数据进行训练,以使AI模型能够理解和回答用户的问题。
3. 平台建设:搭建AI人工智能客服的平台,可以选择使用现有的AI客服平台或自行开发。平台应具备问题分类和分发功能,能将用户的问题正确地分配给合适的AI模型或人工客服进行处理。
4. 整合人工客服:AI人工智能客服通常与人工客服结合使用,以提供更好的服务。在平台上,人工客服可以接收并处理AI无法解决或需要人工干预的问题,也可以通过AI的帮助更快地回答用户的问题。
5. 持续改进:实施AI客服后,需要不断收集用户的反馈和数据,进行分析和评估。根据用户的评价和反馈,对模型进行调整和改进,以提高回答准确率和用户满意度。
总结来说,搭建AI人工智能客服需要进行数据收集和标注、训练AI模型、建设平台、整合人工客服以及持续改进。这个过程需要有相关领域的专业知识和技术支持,能够充分利用机器学习和自然语言处理的技术。
人工智能的原理,简单的形容就是:
人工智能=数学计算。机器的智能程度,取决于“算法”。最初,人们发现用电路的开和关,可以表示1和0。那么很多个电路组织在一起,不同的排列变化,就可以表示很多的事情,比如颜色、形状、字母。再加上逻辑元件(三极管),就形成了“输入(按开关按钮)——计算(电流通过线路)——输出(灯亮了)”这种模式。想象家里的双控开关。为了实现更复杂的计算,最终变成了,“大规模集成电路”——芯片。电路逻辑层层嵌套,层层封装之后,我们改变电流状态的方法,就变成了“编写程序语言”。程序员就是干这个的。程序员让电脑怎么执行,它就怎么执行,整个流程都是被程序固定死的。要让电脑执行某项任务,程序员必须首先完全弄清楚任务的流程。就拿联控电梯举例:别小看这电梯,也挺“智能”呢。考虑一下它需要做哪些判断:上下方向、是否满员、高峰时段、停止时间是否足够、单双楼层等等,需要提前想好所有的可能性,否则就要出bug。
某种程度上说,是程序员控制了这个世界。可总是这样事必躬亲,程序员太累了,你看他们加班都熬红了眼睛。
于是就想:能不能让电脑自己学习,遇到问题自己解决呢?而我们只需要告诉它一套学习方法。
大家还记得1997年的时候,IBM用专门设计的计算机,下赢了国际象棋冠军。其实,它的办法很笨——暴力计算,术语叫“穷举”(为了节省算力,IBM人工替它修剪去了很多不必要的计算,比如那些明显的蠢棋,并针对卡斯帕罗夫的风格做了优化)。计算机把每一步棋的每一种下法全部算清楚,然后对比人类的比赛棋谱,找出最优解。一句话:大力出奇迹!但是到了围棋这里,没法再这样穷举了。力量再大,终有极限。围棋的可能性走法,远超宇宙中全部原子之和(已知),即使用目前最牛逼的超算,也要算几万年。在量子计算机成熟之前,电子计算机几无可能。程序员给阿尔法狗多加了一层算法:A、先计算:哪里需要计算,哪里需要忽略。B、有针对性地计算。——本质上,还是计算。哪有什么“感知”!在A步,它该如何判断“哪里需要计算”呢?这就是“人工智能”的核心问题了:“学习”的过程。仔细想一下,人类是怎样学习的?人类的所有认知,都来源于对观察到的现象进行并根据总结的规律,预测未来。当你见过一只四条腿、短毛、个子中等、嘴巴长、汪汪叫的动物,名之为狗,你就会把以后见到的所有类似物体,归为狗类。机器的学习方式,和人类有着质的不同:人通过观察少数特征,就能推及多数未知。举一隅而反三隅。机器必须观察好多好多条狗,才能知道跑来的这条,是不是狗。这么笨的机器,能指望它来统治人类吗。它就是仗着算力蛮干而已!力气活。具体来讲,它“学习”的算法,术语叫“神经网络”(比较唬人)。(特征提取器,总结对象的特征,然后把特征放进一个池子里整合,全连接神经网络输出最终结论)
它需要两个前提条件:1、吃进大量的数据来试错,逐渐调整自己的准确度;2、神经网络层数越多,计算越准确(有极限),需要的算力也越大。神经网络这种方法,虽然多年前就有了(那时还叫做“感知机”)。但是受限于数据量和计算力,没有发展起来。神经网络听起来比感知机不知道高端到哪里去了!这再次告诉我们起一个好听的名字对于研(zhuang)究(bi)有多重要!这两个条件都已具备——大数据和云计算。谁拥有数据,谁才有可能做AI。目前AI常见的应用领域:图像识别(安防识别、指纹、美颜、图片搜索、医疗图像诊断),用的是“卷积神经网络(CNN)”,主要提取空间维度的特征,来识别图像。自然语言处理(人机对话、翻译),用的是”循环神经网络(RNN)“,主要提取时间维度的特征。因为说话是有前后顺序的,单词出现的时间决定了语义。神经网络算法的设计水平,决定了它对现实的刻画能力。顶级大牛吴恩达就曾经设计过高达100多层的卷积层(层数过多容易出现过拟合问题)。当我们深入理解了计算的涵义:有明确的数学规律。这个世界是是有量子(随机)特征的,就决定了计算机的理论局限性。——计算机连真正的随机数都产生不了。——机器仍然是笨笨的。更多神佑深度的人工智能知识,想要了解,可以私信询问。
由于从事智能客服领域,对智能客服的开发也有比较全面的了解,这里从AI技术的角度介绍一下。 智能客服用到的技术群 智能客服机器人会用到很多人工智能方面的技术,比如自然语言理解、深度神经网络、知识图谱、语音识别、语音合成等方面的技术。为了便于您从总体上了解这些技术,以璞娲智能客服用到的技术为例,请参考下面不同角度的技术全景图。 从客服处理过程理解AI技术 要理解智能客服中的AI技术,我们可以从技术的应用过程来加以理解。比如电话应对过程中,智能客服会用到下面几种技术。智能客服中用到的AI技术 上面从客服处理过程的角度介绍了几种技术范畴, 首先你要知道它一定要具备学习能力,接下来就是各种喂数据了。 可以从以下几个步骤着手: (1)确定任务(智能客服); (3)任务或问题的明确定义:当做分类任务解决 还是 直接生成回答的问题;针对不同的问题,分别考虑数据收集、收据处理、算法选型、评估方案与指标设计、实验设计、上线方案和运维等问题。 (4)详细分析好任务和待回答的问题后,就需要准备语料库(注重数据质量,好的数据质量,胜过最优秀的算法); (5)数据预处理,将文本数据转换为词向量(有多种方法,如word2vec等等),考虑输入数据与标签数据组织形式,可以参考智能问答相关的开放数据集; (6)数据分析,主要包括数据量大小的分析、词向量高维嵌入分析、如果是分类任务还要分析类别的数据平衡性;能想到的统计分析与数据处理方法都可以考虑,目标是数据高质量;值得一提:数据量的大小决定数据处理(如需要数据增广、类别平衡、数据上或下采样等)、方法的选择以及模型训练的方法(如使用预训练模型、考虑小样本学习方法等); (8)实验与结果评估,注重训练数据与评价数据划分,科学/严谨实验,科学分析;利用设计指标进行评估并充分分析实验结果,寻找模型做得不好的样本案例(badcase); (9)badcase分析与解决; (10)上线前实测,逐步扩大用户使用范围; (11)继续跟进和改进出现的问题,重复(1)~(10)的环节。 智能客服的主要价值在哪里? 在企业的经营中,客服是必不可少的角色,在很大程度上,客服是企业与客户唯一的直接接触通道,客服的价值在于解决用户问题,改善用户体验,提升企业口碑,营销促进交易等等,但传统的客服模式放到如今的互联网时代,短板立现。成本、效率、沟通方式等都有待提升与改进,由此,智能客服的价值得以凸显。 直观来看,智能客服对传统客服行业的主要价值体现如下: 1、智能客服在处理有明确结论的简单重复性问题上,展现了极高的工作效率,人工客服可以节省更多时间与精力去处理更为复杂、关键的客户问题,去服务VIP或是个性化需求更强烈的客户,从而达到提升客户满意度的效果。同时企业的人力、管理、运维成本都得到大幅下降。 2、智能客服在本质上是机器,机器没有生理局限,服务时长远大于人力,同时它也不存在情绪波动,可以实现百分之百的微笑服务,保持标准的服务质量。特别是在客户业务规模达到明显的波峰波谷时,智能客服可以在短期内实现大批量复制解决,以应对业务量的波动,实现弹性运维。 3、智能客服还可以应用在企业的营销活动中,在传统的电销时代,人工外呼作为很多企业的营销主要手段,耗时长,效果差,一个客服一天所能拨打的电话量有限,而电销恰巧又是一个需要“广撒网,多尝试”的营销方式。此时,智能客服交互系统中的呼叫中心功能就可以被很好的利用起来,增加呼出频率,扩大呼叫范围,提升呼叫中心的价值创造力。 智能客服既有这么多优势,那它的出现又是否会对传统的人工客服造成替代性的威胁呢? 其实不然,传统的客服行业就像是一座金字塔,人工智能并不是将它推倒重建,而是在思考如何做到机器辅助人工,部分代替人工,扩大金字塔的基层,稳固上层结构。 由此,智能客服的主要价值可以概括为:在满足企业对客服工作的需求的同时为企业减投增效,帮助企业更好的实现营收。 逻辑推理 知识表示 自动规划 机器学习 自然语言 感知 行动处理 人类情绪 计算创造 综合智能 只要用在合适的地方。无论各行各业,机器人代替人工,能够极大增强企业办公效率,增加收益,降低用人成本,人工智能的发展最大的受益者是人类。人类的创意是无限的,但是自身能力也是有局限性的,也需要机器人来辅助人类。所以各有优势,无所谓谁的业务能力强,都是相互弥补的。这没法比较。 随着电话服务热线的出现,以及企业客户服务的不断提高。在移动互联网时代,客户通信服务也变得多样化。除了申请400或95个号码建立客户服务系统来改善客户服务外,企业还通过网络服务、移动应用、公共微信、微博等渠道提供服务。当越来越多的人以这种方式与企业员工接触时,当人工客户服务不能及时处理多个用户和问题时,导致客户体验差,再加上企业的雇佣成本不断增加,智能客户服务机器人顺应时代的到来。智能客户服务机器人已经成为企业与用户之间最重要的通信工具。广泛应用于金融、教育、电子商务等领域。 在微博上,我们总能看到一些客户服务机器人在本地测试市场上并不想象智能,自动回复单句严重,回复内容错误,人们想要有人工的客户服务来与他们沟通。问题是,客户服务机器人什么时候才能真正“理解”?编辑曾体验过腾讯、阿里小米、京东和大银行的在线客服平台。电子商务服务平台具有响应速度快、识别率高、产品促销个性化、信息优惠等增值服务的共同特点。但对这句话的理解却偏低。 在当前的客户服务中,机器人客户服务作为手动客户服务的辅助工具,帮助手动客户服务解决,解决客户的诸多问题,降低手动客户服务的工作压力,提高工作效率手动客户服务,大大提高了解决方案的准确性。效力。在与人类的对话中,客户服务机器人已经成为人类复杂情绪的难点。在接下来的几年里,客户服务机器人不会完全取代人们的工作。深入整合人机的“无人值守客户服务”是打破这一瓶颈的最佳方式。 所谓智能客服机器人实际上是一个人工智能信息系统,它可以用自然语言与用户进行通信。它使用了许多智能人机交互技术,包括自然语言理解和机器学习技术。它能够以文本或语音的形式识别和理解用户的问题,通过语义分析了解用户的意图,与用户进行人性化的沟通,为用户提供信息咨询等相关服务。 在当前人工智能迅猛发展的浪潮中,福山北明信息技术公司负责人表示,优秀的客户服务依靠人工实能和海量数据来深化客户服务场景的应用,不断优化、创新和完善。描述了“可定制”的智能客户服务,它能够准确地适应业务需求并继续学习,并帮助、适应和回答大量的常见问题。它大大提高了人类的效率。它可以广泛应用于网站、应用程序、电话客户服务甚至离线窗口。优秀的客户服务已成为深圳平安公司的合作伙伴。在智能客户服务领域实现了战略合作。全面启动人机对话培训平台,为企业构建基于ai的智能客户服务解决方案。 2018年9月,发布了4.0.0正式版本的优秀客户服务,添加了群集和企业知识管理系统,使用群集解决方案支持多点部署方案,添加了企业知识管理系统组件,并拥有专业知识管理系统。和新的移动智能推荐。深入挖掘各种需求场景,人们对机器人的满意度并不低于人工。 佛山市贝米信息技术有限公司(www.youkefu.cn)成立于2017年3月,是一支年轻而充满活力的团队。公司的主要“优质客户服务”是一个全渠道的综合客户服务系统,集成了多个客户服务渠道,以帮助各个行业。各种规模的企业建立了客户服务体系。通过邮件,短信,电话语音,webim在线客服,微信,微博,h5页面,app界面等各种渠道的客户服务请求和对话,集成在管理平台上,统一响应和支持客户服务。 当你打 10086 的电话,语音提示如下: 欢迎致电中国移动, 全心全意为您服务, 普通话服务请安 1, For English service press pound key ... 我这个手机号用了 5 年了吧,打10086这个电话不下 50 次了,你还不知道我是不是说普通话? 以上只是举了一个最常见的例子。 随着智能技术的发展,越来越多的客服咨询都开始交由对话机器人解决。 就在冠状病毒疫情爆发,大量民众通过手机或电脑咨询政府以了解最新的疫情信息和防控措施。在这特殊情况下,原本的人工客服是无法承接这么多咨询的,而客服客服就尤为重要。 简单来所,智能客服系统 主要基于自然语言处理、大规模机器学习、深度学习技术,使用海量数据建立对话模型,结合多轮对话与实时反馈自主学习,精准识别用户意图,支持文字、语音、图片等富媒体交互,可实现语义解析和多形式的对话。 但是每个行业有自己的业务特点和知识范围,每个呼叫中心公司都应该根据自己的业务,逐步解决最基本的问题。 比如10086,一次次重复问你说普通话还是英语。 智能服务是一个过程,不是结果。 随着AI人工智能赋能客户服务。智能客服系统应运而生。 智能客服在提升企业服务质量和工作效率,降低企业管理和运营成本,提高企业的核心竞争力方面有着重要作用。 我们利用AI技术能够同时实现 智能语音导航、智能话务员、智能工单管理、智能数据分析、智能语音质检、智能外呼 等功能。 并且能够与用户原有的呼叫中心系统有效对接,具有简单操作易上手、功能齐备、实用性强的特点。 如果企业想实现客户服务精细化运营管理,可以考虑试用哦~ 一、智能机器人的能力人工智能客服系统的核心能力主要体现在智能机器人上,企业在选择机器人前,需要了解机器人有哪些功能或能力,可以帮助企业做选择参考。智能客服机器人通常包含以下几项关键能力。(一)自然语言识别能力机器人拥有自然语言识别能力,可以帮助机器人更好的理解人类语言。举个例子来说:人类对于一个问题会有多种不同的方式,机器人需要理解问题中的关键点,从而找到对应的问题。这是考察机器人性能时较为重要的指标。 (二)知识库和自主学习知识库相当于机器人的大脑,企业需要在使用初期为机器人建设一套知识库。这就相当于给新员工一个产品介绍或业务资料。在对接客户时机器人会从已有的知识库中搜索问题的答案。在不断接受问题和解决问题的过程中,智能客服系统机器人会完善知识库,将处理的问题积累下来,就形成了自我学习能力。通过这种方式可以方便以后更好的解决客户问题。(三)其他能力 有些智能客服机器人会有一些扩展能力,能通过网络/API接口找到一些其他资源,比如:查询快递、查询天气等等。具体来说:电商客服也许可以在与来客交谈时,帮助客户查询快递情况,这类需要由机器人就能完成了,并且速度和准确度都可以保证,无需额外的人力来处理这类问题。 二、人机对话有温度 智能客服机器人不仅能替代人工客服的工作,在拨通用户电话后,还可以像真人一样与用户进行沟通交流。而这些需要大量的人工智能技术支出,比如自然语言处理、语音识别等多个领域。
12333转人工听语音提示按0就可以了,需要3个步骤实现,具体操作步骤如下:1,输入号码打开手机电话的主页面后,输入12333号码。2,点击呼叫页面中输入12333号码后,点击下方的呼叫按钮。3,按0转人工拨通电话号码后,根据语音提示在拨号键上按0就可以转人工客服了。
首先接通12333电话,接通之后按0,即可转接到人工服务了。但是一般转接人工服务的人较多,因此转接的时间较长,需要耐心等待。 12333是全国劳动保障电话咨询服务专用号码。主要为社会公众提供就业、社会保险、人事、人才、工资收入分配和劳动关系等领域的政策咨询、信息查询、办事指南和投诉举报等公共服务。 需要注意的时,由于全国各地区的时间不一,12333人工服务的服务时间也算有所不同的,但一般情况下,12333人工服务时间为早上8点到下午6点,周六服务时间为早上9点到下午4点,而周日一般是休息的。
社保12333转接人工客服步骤:首先拨打12333接通后,在听到智能语音客服回复后,在拨号键上选择0,可以转接到人工客服坐席。人工客服的工作时间一般是上午9点到12点,下午1点到5点,建议大家在这个时间拨打。
首先你拨打12333的时候是肯定可以转人工客服的如果按零也转不了你可以听语音提示还有就是你在上班时间拨打比较好拨打12333根据里面的人工提示去操作,一般是按0转人工。
可能不同地区内容不同,可以在社保咨询电话前加拨当地区号,然后根据语音提示操作一般上面会提示。拓展资料“12333智询通”智能服务系统通过对12333电话咨询中心知识库和市人力资源和社会保障局门户网站海量信息资源的有机整合,着重突出人机互动“对话”服务方式,实现了网站在线咨询形式和交互流程的创新
12333是有人工服务的,但接通后如果前面有人在咨询,
即使还没有转入人工也会开始扣费
企业号智能客服无法取消,只能接智能客服提示的指令操作,如果确需人工客服,则按智能客服的指令转到人工客服。多单位为了节约成本,电话接通时都是直接接到智能客服的,智能客服会按顾客要求分派到各个服务点,但是如果智能客服无法解决的问题,最终才会接入人工客服。
京东客服无法建立一连接是客服的人工客服进不去是操作不当,如果是商家需要找京东的人工客服,只需要在后台的人工窗口里面去直接输两次转人工等待三到5秒,人工客服就会回复了是消费者手机,App要联系人工客服,直接在聊天机器人窗口也输两次转人工就可以接人工客服回复了。